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We discuss the excess conductivily above 7, due to renormalized order-parameter fluctuations in
YBa,Cu;0,_5 (YBCO) at microwave frequencics. We calculate the effects of the uniaxial anisotropy on the
renormalized fluctuations in the Hartree approximation, extending the isotropic theory developed by Dorsey
[Phys. Rev. B 43, 7575 (1991)]. Measurements of the real part of the microwave resistivity at 24 and 48 GHz
and of the dc resistivity are performed on different YBCO films, The onset of the superconducting transition
and the deviation from the linear temperature behavior above T, can be fully accounted for by the extended
theory. According te the theoretical calculation here presented, a departure from Gaussian toward renormalized
fluctuations is observed. Very consistent values of the fundamental parameters {critical temperature, coherence
lengths, penetration depth) of the superconducting state are obtained. [S01 63-1829(98)01342-3]

L. INTRODUCTION

The analysis of fluctuations-induced excess conductivity
has stimulated in the past years a considerable amount of
work. Theoretical investigations of the dc as well as the
finite-frequency conductivity dates from the 1960s,!~> and
development of this topic proceeded until the discovery of
high-temperature superconductors (HTSC’s). High critical
temperatures and short coherence lengths conspire to the gi-
ant enhancement of thermodynamical fluctuations in
HTSC’s. Due to their layered structure and to the consequent
anisotropy in the superconducting state, the effects of ther-
mal fluctuations are further enhanced. As a result, these ma-
terials can be viewed as ideal systems 10 experimentally
verify the theonies for the excess conductivity. Among the
high-temperature compounds with moderate but significant
anisotropy, YBayCu;3,_; (YBCO) is the most studied on
this aspect,®!* and we will restrict our discussion and mea-
surements to this compound only.

Despite the extended experimental investigation, there is a
considerable debate on the appropriate model for the fluctua-
tion conductivity in zero magnetic field:"®'3'7 most of the
existing analysis of the effects of order-parameter fluctua-
tions on the dc conductivity have been performed in terms of
Aslamazov-Larkin (AL) isotropic three-dimensional (3D)
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fluctuations® for temperatures close to T, while a crossover
to 2D fluctuations has been claimed at temperatures substan-
tially higher than T, according to the interpretation of the
data in terms of the Lawrence-Doniach (LD) model.’® Not
wo close to T,, data on YBCO have been shown to be
compatible with an AL interpretation supplemented with a
Maki-Thompson (MT) term.>” However this framework has
been seriously questioned by Hopfengartner ez al.:® by ex-
tending the AL theory to an anisotropic superconductor and
intreducing a phenomenological cutoff for long wave-vector
fluctuations they showed that the dc excess conductivity in
YBCO films agreed well with the modified AL expression,
without the need for MT terms (up to T=1.1T,). Most im-
portant, from this kind of analysis no 3D-2D crossover was
found in YBCO, in contrast with the ordinary LD-like
crossover.® These interpretations are based on theoretical re-
sults obtained in the Gaussian approximation. Approaching
the critical region close to T, this treatment must be ex-
tended to take into account interactions between fluctuations.
The amplitude of the critical region is theoretically predicted
10 be experimentally accessible for these superconductors,'®
but the actual value of the crossover temperature from the
Gaussian behavior is stll debated.!>?

Up to now, the analysis of the dynamical properties near
T, has been performed mainly through the comparison of
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experimental data with appropriate power laws of the re-
duced temperature. However, experimental data give contro-
versial results. For example, the dc conductivity above T
(Ref. 21} and the penetration depth A(7") below T, (Ref. 11)
have been found 1o follow a 3D XY-like power law, but
Gaussian results for A(7) have been recently reported.'?
Moreover, a possible crossover from critical to 2D Gaussian
flucuations has been reported in the microwave
conductivity.'? In fact, simple power laws or scaling behav-
iors, without explicit expressions for the various quantities,
do not allow a quantitative and complete comparison be-
tween experiments and theories.

Explicit expressions for the finite-frequency conductivity
have been recently calculated by Dorsey? beyond the Gauss-
ian approximation, using a Hartree approach; in this treat-
ment, confined to an isotropic, three-dimensional supercon-
ductor, a renormalized expression for the 3D isotropic
fluctuational conductivity is deduced, explicitly as well as in
a scaling form. The basic scaling parameter is the
temperature-dependert correlation time 7~ £%, with the cor-
relation length diverging at T=17, as £é~¢€ ¥, where suffi-
ciently close to T,., e=(T/T.—1). Measurements of the
complex conductivity as a function of frequency9 analyzed in
terms of the above-mentioned theory have revealed a some-
how puzzling behavior: in fact, the complex conductivity
o{w) does exhibit a scaling behavior close to the expected
one, but the so-obtained critical exponents, ¥==1.2 and z
=26, are quite different with respect to the Gaussian values,
v=0.5 and z=2; the critical exponent v is also in conflict
with the prediction for the 3D XY uncharged fluid, v=2/3.%
The determination of the critical exponents close to T, is
uncertain: in fact, a different scaling analysis of measure-
ments of the frequency-dependent conductivity up to 2 GHz
in zero magnetic field gave large exponents, ¥==1.7 and ¢
=5.6,'% in contrast with those previously obtained.

A noticeable fact in the existing body of experimental
data and theoretical models is that the commonly performed
analyses do not explicitly include the anisotropy, so that an
intrinsic feature of HTSC’s is lost. In particular, while there
are Gaussian theories for the anisotropic fluctuational
conductivity,4 the inclusion of at least a mass tensor in a
renormalized theory for the finite-frequency fluctuational
conductivity is still missing, at least to our knowledge. Since
in materials such as HTSC’s the intrinsic anisotropy is one
ingredient that possibly makes the departure from Gaussian
behavior experimentally observable, we think that a quanti-
tative analysis of the data must be based on the explicit in-
clusion of the anisotropy in the calculations.

In this paper we extend the renormalized-fiuctuations
theory developed by Dorsey*? by introducing an anisotropic
mass tensor, and we compare the results to resistive transi-
tions in zero field obtained in dc and at high frequency,
above the critical temperature. In Sec. II, we calculate the
Gaussian and renormalized-fluctuations-induced excess con-
ductivity above T, in a uniaxial superconductor, subjected to
an alternating electric field along the (a,b) planes, stressing
the main differences that come ous by the introduction of the
anisotropy. We write down the explicit expressions for the
dynamical conductivity as a function of the frequency and
temperature, in terms of physical parameters (coherence
lengths, penetration depth), In Sec. III we briefly describe the
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samples under study, we sketch the experimental apparatuses
and we present the resistive transitions in de, at 24 and 48
GHz. In Sec. IV we show that very good fits to the data are
obtained with the extended theory here developed, with very
reasonable parameters. A smooth departure from Gaussian
fluctuations is obtained.

II. THEORY

To take into account the intrinsic anisotropy of HTSC’s,
we start from the standard Ginzburg-Landau functional for a
uniaxial anisotropic superconductor in presence of an exter-
nal potential vector A (throughout the paper we use Systéme
International units):

F=J’dr{ > A

j=xyz 2m;

2
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where ¢*=2¢ is twice the electronic charge, m, ,=m,, and
m,=m, are the masses of the pair along the main crystallo-
graphic directions, the coefficient « is a linear function of the
reduced temperature x=ae€, and e=In(7/T,) is the reduced
temperature.* Our aim is to calculate the dynamical conduc-
tivity along the {a,b) planes (e.g., the x axis) in presence of
an electric field E, or equivalently, a vector potential A. In
order to calculate a dynamical property of the system, such
as the conductivity, we consider the temporal evolution as
determined by the time-dependent Ginzburg-Landau (GL)
equation
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where I'y is a constant relaxation time; thermal fluctuations
are represented by the noise term £(r,?) with & function cor-
relation  {{"(x,){(x",1"))=(2kgTIT ) S(r—rx") 8(t—1').
We choose the gauge where the scalar potential ¢(r,£)=0.
The calculation scheme is as follows: we first compute the
conductivity above T, in the linear response in the Gaussian
approximation. The resuit will depend on the temperature
through a(T). Then we renormalize the « parameter by us-
ing a Hartree approximation for the quartic term in the GL
functional. Inserting the latter in the Gaussian conductivity
we get the renormalized result. This approach has been used
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in Ref. 22 to calculate the linear and nonlinear excess con-
ductivity in an isotropic superconductor. While our analysis
explicitly includes the amisotropy in the calculation of the
linear conductivity, nonlinear effects are beyond the pur-
poses of this paper. The response of the system to the in-
plane field A(r) is determined by the current operator aver-
aged with respect to the noise (here represented by the
brackets): it can be expressed as a function of the correla-
tion function of the order parameter C(r,f;r',t")

=(¢(r, )" (r' "))
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{(J ()=~ j ——;qx Ik=q—~ %A(t);t,t ,

(3)

where the momentum dependence has been shified from k to
the new vector g=k+ (e*/A)A(1). As a first step (Gaussian
approximation), we neglect the nonlinear term B|y/|2y.
Equation (1} is then exactly solvable, and for the correlation
function one gets

2 2 2
e 2 qz FOﬁ
C(q;t,t)=2kBTF0J0 expy —2Tgas—Tyhi*s p +m - g+ Gy jdu[Ax(t w)—A ()]
Foe*Z 5 3 1 5 2
- —— “’Odu(Ax(t—u)) -;(J’Odqu(tAu)) ds. (4)

In the frame of the linear response, the quadratic terms in
the vector potential can be neglected. Using the expression
found for the correlation function, Eqg. (4), the current opera-
tor in Eq. (3) becomes
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After integration, Egs. (6) and (7) can be wrilten as
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where S (x) and S_(x) are the scaling functions as can be
found in Ref. 22 (the subscript g means that this result is
obtained in the Gaussian approximation), and they have the
property that §,(x—0)=1 and §_(x—0)=0. The charac-
teristic frequency (1 is

32k,T
Q=2Tya=

E, (9)

where the relaxation time I'g=(8kgT/fima) is evaluated
from the microscopic theory' and £.o=#/(2ma)'? is the
zero-lemperature c-axis correlation length. Before proceed-
ing further to the renormalization, some comments are in
order. Equation (8) contains all the previously obtained re-
sults in various hrmts as w—0 Eq. (8) gives the dc, aniso-
tropic AL result.3? As expected, at nonzero frequencies the
conductivity does not diverge at T,, due to the vanishing of
the scaling functions §. when writien in terms of the tem-
perature. Moreover, the result in Eq. (8) agrees with the one
calculated with a different approach by Klemm.* The isotro-
pic result is recovered by simply setting £,,=¢£. The intro-
duction of the anisotropy leads to an enhancement by a fac-
tor of y=§,0/€ in the prefactor of the fluctuation
conductivity, as seen by the fact that Eq. {8) contains only
the short coherence length £,,. However, in the Gaussian
approximation, the characteristic frequency remains un-
changed with respect to the isotropic result. This is no longer
true in the renormalized regime, as we show below.
Approaching T,., the Gaussian approximation breaks
down. We extend our calculation to this region by consider-
ing the effects of the interaction term 8| |y of the Landau-
Ginzburg functional through the Hartree approximation: we
replace the nonlinear term by its average value and put it in
a renormalization of the parameter a. The renormalized pa-

rameter E

G=a+ Al >—a+ﬁf Clgtr)  (10)

(2 )3

represents the renormalized temperature dependence and it is
defined through this self-consistency equation.

All the quantities above calculated in the Gaussian ap-
proximation contain the temperature dependence through the
parameter &; hence, the relations found can be easily ex-
tended 1o the interacting fluctuations regime by replacing a
—a. In particular, the correlation function is formally iden-
tical to the one determined by means of Eq. (4); evaluating it
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FIG. 1. Renormalized coherence iength as a function of the
temperature, £, (open circles). Parameters appropriate to the fitting
of the data on sample IV were used. Various power laws are de-
picted, in the form &,,~[In(T/T.)]~* Gaussian (v=1/2, full line),
critical (#=1, dashed line), and »=2/3 (dotted line).

with an electric field along the x axis in the frame of the
linear-response approximation, Eq. (10) becomes

BkgT

B ~
ﬂ (mmec) 1,2(2"1:.11105) ”21
(1D

where a, is the bare o parameter evaluated at the renormal-

2mga=2myla—ao)—

ized critical temperature T, at which the parameter a van-
ishes: @, =a(T=T.)=a n(T.IT,).

The self-consistency equation, Eg. (11), can be
usefully interpreted as the relation which determines the
renormalized correlation length along the (a.b) planes

In(T/T,)

Ep=(h22m )™
12
1+ 14+ — , (12
( W2K472§zb0) } (12

where w= (e’ uok T/ mh?), o is the magnetic permeability
of vacuum, y=(&,p0/&.0) is the anisotropy factor and «
= (A gpo/ Eapo) 15 the Ginzburg parameter, which is related to
the coefficient B8 of the Landau-Ginzburg functional through
the London equation.2® The renormalized coherence length
follows the usual, Gaussian temperature behavior €™ * with
v=1/2 sufficiently far away from 7., but approaching the
critical temperature it diverges with the critical exponent v
=1, as depicted in Fig. 1. A smooth crossover between these
two power laws is then obtained by varying the temperature
(Fig. 1). It is interesting to note that, while the exponent »

2 2
WK vEqpg

Eab( )= —
In{T/T,)
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=1 is recovered only very close to T,, a substantial depar-
ture from the Gaussian value »=1/2 is obtained at rather
high temperatures, and this regime is very well approximated
by an exponent v=2/3. Once the renormalized coherence
length is obtained, the conductivity can be immediately writ-

ten down by substituting £,,(T) with £,,(7), and one gets

#o=—y b D vis L)
32h £ (T )
=04 (T[S +iS_], (13)
where
2
. T
fi(r) ke (f&) (14)
h gab(T)

and 7= 1/(1(T) plays the role of the renormalized scattering
time. Expression (13) takes then the form of the renormal-

ized dc excess conductivity o, (T) times a frequency-
dependent contribution. As it can be noted from Eqg. (12), the
expression for the fluctuation conductivity depends on a lim-
ited number of parameters, namely the bare quantities 50,

y and , T. being the only renormalized parameter. We note
that now the (renormalized) scattering time does depend on
the anisotropy, differently from the Gaussian result, Eq. (9).
As expected, in the limit y=1 our results coincide with the
isotropic calculation.” We stress, however, that the anisot-
ropy v does not enter in a trivial way in the renormalized
quantities: it enters through different combinations in the
prefactor of o and in the renormalized scattering time. In
particular, our caiculation cannot be simply mapped onto the
isotropic result by the use of some ‘‘lumped’’ parameter in
the fitting; 7y is an independent parameter.

1. EXPERIMENTAL SECTION

Measurements of the microwave and dc resistivity in
nominally zero field were performed. Five YBCO thin films,
grown by different methods?”? were investigated. All
samples were highly c-axis oriented, as indicated from the
#—26 rocking curve. Twinning is largely present in all
samples (as usuval in films). Thicknesses ranged from .08 to
0.5 pum. The main features are presented in Table L It is
worth mentioning that samples 1I and IIT are of inferior qual-
ity, as can be seen, e.g., by the fact that the normal-state
resistivity is 2—3 times higher than in the other films.

Microwave resistivity measurements were performed on

TABLE 1. Sample characteristics, measuring frequency (e¥27), measured inflection temperature (7),

ﬂ.nd ﬂt pmewrs (Tc 7§abﬂ ’xabﬂ”y)'

Sample Thickness (um) Substrate w27 (GHz) T, (K) T (K) £ (A)  Nupo (A) Y
1 0.3 LaAlO, 48.2 86.2 86.7 144 1300 6.4
{| 0.08 LaAlQ; 48.2 86.5 86.8 17.5 1300 5
IIE 0.5 LaAlO, 48.2 87.2 87.2 16.5 1500 54
v 0.12 LaAlO, 24.0 84.6 84.4 14.3 1500 6.6
\Y 0.1 S:TiO, de 89.7 89.6 15.0 1100 6.3
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as-deposited samples I-IV. The microwave response was in-
vestigated at 48 and 24 GHz, in samples I-III and IV, re-
spectively. Extensive descriptions of the experimental sys-
tems have been given previonsly,y:”31 and we give here only
a short sketch. Two experimental systems were employed. In
both cases we made use of the cavity-end-wall-replacement
method: the sample is mounted in order to replace onc end-
wall of a mechanically tunable right-cylinder resonant cav-
ity. The cavities were designed to work in absorption in the
TEq;, mode, at 24 [cavity (a)] and 48.2 GHz [cavity (b)],
with quality factors of about 15 000 and 6000, respectively.
The relatively low quality factor prevented an accuratc mea-
surement of the absolute surface resistance below —70 K,
but allowed us to obtain reliable measurements in the whole
transition range and well above T.. As described in Ref. 31,
the unloaded quality factor O of the cavities was measured
by recording the (Lorentzian) resonance shape as a function
of the slowly (~0.2 K/min) increasing temperature.
Changes of Q reflect the changes in the microwave surface
resistance.”’ A calibration of the cavity response is, in prin-
ciple, needed to obtain the absolute surface resistance, but
since below ~70 K the changes in Q cannot be resolved due
to the reduced sensitivity of the cavities, data presented as

1 B 1
Q(T) Q70 K)

are independent of the calibration (a detailed discussion can
be found in Ref. 31). This is equivalent to taking as zero the
low-temperature value of Rg. Here G is a known geometri-
cal factor.

The real part of the microwave resistivity is directly ob-
tained from the data due to the reduced sample thickness d.
For samples thinner than twice the penetration depth (the
skin depth & in the normal state, the London penetration
depth \ in the superconducting state) the measured surface
resistance directly gives the real part of the resistivity
through:

R5(T)—Rg(70 K)=G[ (15)

Re[p(T)]=Rs(T)d. (16)

A detailed study of the applicability range of this approxi-
mation can be found in Ref. 32. We notice, however, that we
are intercsted in measurements close to and above T, , where
A is much longer than the zero-temperature value, Conse-
quently, Eq. (16) is valid up to (at least) 3%,%? also in the
thicker film. The data for the so-obtained microwave resis-
tivity on four samples as a function of the temperature are
reported in Figs. 2 and 3 in terms of Ap(7)=p(T)
—p(70 K), accordingly to Egs. (15) and (16). The behavior
is essentially linear at high temperatures, and gradually
bends approaching the transition. The inflection temperatures
of the microwave resistivity, T;, in the various samples are
reported in Table I Sample IV was measured at 24 GHz, and
samples I-IIT at 48.2 GHz. Additionally, we performed dc
resistivity measurements on a patterned sample. Sample V
was patterned in a 2 mm long, 100 um wide strip by ion
milling. The dc resistivity was measured through a four-
probe lock-in method, with the current oscillating at 20 Hz.
Low current density (~ 10 A/cm?) was used. Data were col-
lected upon cooling and warming in a commercial helium
flow cryostat. No differences were observed in the corre-
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100 A 110

110 T(K) 120
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FIG. 2. Measurements of the microwave resistivity at 48.2 GHz
on sputtered samples I-TI (open circles) and fiis through Eq. (17)
{continuous lines). Normal-state resistivity: dotted lines. Upper
panel: data for the optimized sample (sample I), with lower normal-
state resistivity. In the inset: enlargement in a restricted temperature
range. The anisotropic Gaussian fits through Eq. (8) afe also re-
ported for comparison: dashed line (same parameters as for the
renormalized fit) and dotted line (T.=87.3K, £.=1.7 A). The
Gaussian fits do not reproduce well the shape of the transition.
Lower panel: data for lower quality samples II (main panel) and III
(inset). Scattering of the data above T is due to the sensitivity limit
of the cavity.

sponding resistive transition, within the voltage (~5nV)
and temperature (~5mK) sensitivities. Zero resistance
{(within our resolution) was attained at 7,=88.8 K.

IV. DISCUSSION AND CONCLUSIONS

We proceed here to the fitting of the zero-field resistive
transitions above T, on the five samples with the proposed

O
o
N A
0

T U T |
90
100 RN (K) 120
FIG. 3. As in Fig. 2, for the microwave resistivity at 24 GHz on
the laser-ablated sample IV,
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model. First of all, we write the total conductivity as the sum
of the normal and fluctuational terms, so that the total resis-
tivity is given by

1 1
_ — , 17
e N opTw) Do)

where we have assumed that the normal-state relaxation time

is much smaller than 1/e. Here, o(T, ) is the fluctuational
conductivity and p,(7) is the measured normal-state resis-
tivity. The latter is linear above ~ 120 K, and it was linearly
extrapolated down to T,. Fits of the experimental data with
the real part of Eq. (17) can now be made. The theoretical
expression depends on four independent parameters, that can
be chosen to be the bare £,,q, N5 and ¥, and the renormal-
ized critical temperature T, (which is, in this frame, the ex-
perimentally observable critical temperature). With the
present interpretation, no information comes from the data
for the bare critical temperature, T, .

Before commenting on the fits, a few notes should be
added. First of all, as common to many calculations of the
fluctuational conductivity,!* the theory overestimates the
fluctuational contribution for 7 T, . This is true also at zero
frequency. In fact, calculations of the dc excess conductivity
in the Gaussian approximation, explicitly including a high-g
cutoff in the various integrations in the momentum space
show a drastic and sharp suppression of (T, w=0) at suf-
ficiently high T (above ~120 K for YBCO).5'%8 Inclusion
of such a cutoff in the frequency-dependent fluctuational
conductivity is beyond the scope of this paper. Instead, we
will phenomenologically take into account this effect by
making the physically reasonable assumption that at suffi-
cientty high temperature (say, 150 K) the fluctuational con-
ductivity is no longer resolved in the measurements. As a
consequence, we will write the de excess conductivity in Eg.
(13) [and then in Eq. (17)] as o 4.(T)— ¢4.(150 K). Other
possible choices consist essentially of taking a normal-state
resistivity which is higher than the measured one'* or with a
different shape with respect to the linear extrapolation.’
However, our present choice keeps as much contact as pos-
sible with the measured data well above T, and does not
introduce additional parameters.

A second point comes from the fact that the Hartree ap-
proach breaks down near T,. Moreover, the Hartree renor-
malization here presented is perfomed in the adiabatic limit,

that is w/§(T)<€1. Since O(T—T,)—0, all the fits were
performed self-consistently, excluding the data points with

temperatures lower than those for which au’ﬁ(T)= 1. This
requirement, together with the expected cutoff at high tem-
perature, resulted in fits being performed using the data from
about 0.5 K above the critical temperature, up to ~ 120 K,
and the obtained theoretical curves were calculated and plot-

ted down to T,

With these concerns, we performed the fits with the fluc-
tuational conductivity here calculated. The results are re-
ported in Figs. 2, 3, and 4. As can be seen, all the fits are
very satisfying, and the anisotropic renormalized fluctua-
tional conductivity seems to be a good description of the
data. All the parameters obtained are in the range of com-
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FIG. 4. As in Fig. 2, for the dc resistivity on the laser-ablated
sample V. For clarity, only 5% of data are shown. The theory re-
produces fairly well the shape of the transition above T, also in the
limit of zero frequency.

monly reported values (see Table 1).5%*38 In particular, we
note that the low-quality films (samples I and III) have
lower 7y, as expected and usually found in literature. As a

matter of fact, all the T,’s almost coincide with the inflection
of the transition, well below the first onset of the supercon-
ductivity. If one allows the bare critical temperature to be at
the onset of superconductivity, one has a rough estimate

|T,—T.|~3 K. While the condition w/{}(7)=1 is reached

~0.5K above T, (slightly depending on the sample), we
note that the fits are in fairly good agreement with the data

even down to T,. It should be mentioned that preliminary
analysis of the flux-flow resistivity’ at 48 GHz below T, on
sample 1 gave an independent estimate for the coherence
length, in agreement with the value here cbtained from zero-
field fluctuational conductivity above T,.

We mention that our data %ght be equally well fitted
with the original isotropic theory.** However, in this case the
parameters attain unrealistic values. As an example, on
sample I one would get a fit with the isotropic theory almost
indistinguishable from the one obtained with the anisotropic
theory with £=2.6 A, Since here £is an isotropic coherence
length, it is reasonable to assume £=(£2,£.)P=¢,,1y'R.
For £,,~15 A one would get ¥~ 200, more than an order of
magnitude higher than known values in YRCO.

The Gaussian anisotropic theory [Eq. (8)] can be made to
fit the data only in the high part of the resistive transitions.
An example is reported in the inset of Fig. 2. It is apparent
that the Gaussian approximation does not reproduce at all the
experimental shape of the resistive transition.

A final note on the 3D-2D dimensional crossover that
might be expected at high temperatures, owing 1o the de-
crease of the c-axis coherence length; being our calculation
explicitly 3D, such a crossover is not included there. How-
ever, it seems that at least up to ~ 120K the data are well
described by the anisotropic 3D theory. This behavior is
completely analogous to the results obtained in dc,*!® where
a Gaussian analysis of the data sufficiently above T, did not
show any dimensional crossover, the departure from the AL
anisotropic 3D behavior being fully accounted for by the
introduction of the cutoff in q space. It would be consistent
also with the fact that, on a pure numerical ground, the renor-
malized coherence length is ionger than the bare one, so that
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the crossover temperature shifts to higher 7, where this phe-
nomenon might be hardly distinguishable from the short-
wavelength fluctuation regime. This poini deserves further
study in the future,

In conclusion, we have developed a theory for the finite-
frequency fluctuational conductivity in an anisotropic
uniaxial superconductor beyond the Gaussian approximation.
We have shown that the anisotropy ratio vy enters in a non-
trivial way in the expression for the renormalized conductiv-
ity. We have performed measurements of the dc and micro-
wave resistivity above T, in several YBCO films of different
quality and preparation process. In all cases the temperature
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dependence of the resistivity at all the frequencies investi-
gated could be well described by the theory here developed
from slightly above T, up to ~120 K, with values of the
parameters in good agreement with common values. Above
~120 K the theory does not apply, and more extensions are
needed.
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